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This paper describes the different roles that robustness can assume when solving a multi-objective design optimization problem. A 

new role for robustness is proposed based on which an approach to conducting multi-objective robust optimization and finding the 

optima is suggested. This new approach is then tested on an analytical test problem and the results are presented. 
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I. INTRODUCTION 

The performance of an electromagnetic design is usually 

affected by uncontrollable and/or unpredictable factors that 

cause perturbations to the performance values which were 

calculated during the design optimization process. Therefore, 

one of the highly desired characteristics of a good design is the 

insensitivity of its performance with respect to uncertainties. 

This concept of low sensitivity is the most popular approach to 

defining robustness. A design is called robust if it shows low 

sensitivity with respect to changes caused by these factors. 

Robust optimization refers to the act of performing 

optimization when some degree of robustness is part of the 

criteria for optimality. Issues such as defining metrics for 

robustness and performing robust optimization have been well 

discussed under the context of single-objective optimization 

[1]-[2]; however,  there has been little research work that deals 

with robustness in multi-objective problems and most of the 

existing work is extensions of measures and methods used in 

single-objective problems [3]. Considering that using most of 

the existing single-objective robustness measures and 

approaches in multi-objective problems would lead to 

significant increases in computational cost, it seems necessary 

to pay more attention to the concept of robustness from a multi-

objective point of view. 

The biggest problem of performing robust optimization is 

that robustness is usually very expensive to evaluate. This is an 

even bigger problem in electromagnetics since the cost of each 

solution evaluation is high. Therefore, finding ways of limiting 

the evaluation of robustness is very important. This paper is 

concerned with the different roles that robustness can play in 

multi-objective robust optimization. 

II. POSSIBLE ROLES OF ROBUSTNESS 

The role that robustness assumes in the process of multi-

objective robust optimization is usually one of the following: 

A. Robustness as extra objective(s) 

Suitable metrics can be chosen in order to measure 

robustness, which is then introduced into the objective space in 

the form of one or more objectives alongside the performance 

objectives. 

B. Robustness as a modifier to performance objectives 

There are multiple techniques for modifying performance 

objectives in order to account for robustness. The new robust 

performance objectives can then be used to perform regular 

optimization. 

C. Robustness as extra constraint(s) 

Measured values for robustness can be used as additional 

constraints which will reduce the size of the objective space. 

D. Robustness as modifier to dominance relations 

In some cases the definition of dominance is modified in 

order to account for robustness when comparing solutions in the 

objective space. 

III. PROPOSED ROLE OF ROBUSTNESS 

All of the possible roles of robustness mentioned in the 

previous section require the evaluation of robustness 

information on a wide range of the objective space. Considering 

that the evaluation of robustness is usually the most 

computationally expensive part in multi-objective robust 

optimization, it is very important that all types of unnecessary 

robustness calculations are avoided. 

The assumption made here about the decision maker’s 

preferences is that robustness is desirable only in optimal or 

close to optimal solutions and it is considered irrelevant in very 

sub-optimal solutions. It is also assumed that the trade-off 

information between robustness and performance is important 

and should be presented to the decision maker. This turns 

robustness into a semi-objective, meaning that it is treated as an 

objective only in the vicinity of the performance optima and 

ignored everywhere else. Putting robustness in this role has the 

advantage of keeping the useful trade-off information while 

avoiding increasing the dimensionality of the objective space 

and limiting the calculation of robustness to a sub-region of the 

objective space. 

IV. IMPLEMENTATION 

There is more than one way to use robustness in the proposed 

role. There needs to be a formulation which defines the region 

in the vicinity of the performance optima where the robustness 

information should be kept. This region is considered the 



optima in this context and the goal of the multi-objective robust 

optimization process is to find it. The implementation approach 

suggested here is based on creating a balance between the 

deterioration of performance and the gain in robustness as we 

move away from the Pareto front. In order to implement this 

balance two unary metrics are used. One is a sensitivity based 

metric called PRHVdominated [4] which can be used to measure 

the robustness of a solution and the other is the hyper-volume 

(S) [5] metric which is used to measure the degree of sub-

optimality of a solution. Note that higher values of 

PRHVdominated correlate to lower robustness and vice versa. Two 

inequalities are used in order to define the optimal region: 

                       𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ≤ 𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑
𝑚𝑖𝑛                      (1) 

                       
𝑆

𝑆𝑟𝑒𝑓

≤ 𝛼 (1 −
𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑

𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑
𝑎𝑣𝑟 )                        (2) 

Figure 1 shows an arbitrary two dimensional objective space 

used to demonstrate the evaluation of (1) and (2) for the solution 

point specified with a cross. 𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑
𝑚𝑖𝑛  is the minimum 

value of 𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑  among the solution points that 

dominate the specified solution point. 𝑆 is the hyper-volume of 

the area enclosed by the Pareto front and the hyper-planes that 

contain the specified solution point. 𝑆𝑟𝑒𝑓  is the reference hyper-

volume which is the hyper-volume of the area enclosed by the 

Pareto front and the hyper-planes that contain the nadir point. 

𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑
𝑎𝑣𝑟  is the average value of 𝑃𝑅𝐻𝑉𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑  over 

the points that dominate the specified solution point. Also, 𝛼 is 

a positive tunable parameter that controls the degree to which 

the trade-off between performance and robustness is allowed. 

Setting 𝛼 to 0 reduces the optimal region to the Pareto front. It 

is recommended that 𝛼 is set to 1 in order to avoid omitting any 

parts of the potentially valuable trade-off information of the 

optimal region. If and only if a solution points satisfies both (1) 

and (2) does it belong to the optimal region. 

 
Fig. 1.  Arbitrary two-dimensional objective space. 

The optimization approach adopted here to perform multi-

objective robust optimization consists of two steps. The first 

step is a generic multi-objective optimization run in order to 

find the Pareto front. The second step uses the end population 

of the first step as its initial population and tries to obtain a 

spread of points over the optimal region defined by (1) and (2). 

V.   RESULTS AND CONCLUSIONS 

The suggested approach is applied to the analytical test 

problem defined and explained in [4] for 𝛼 = 1: 

                                   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 =  [
𝑓1

𝑓2
]                                 (3) 

                            {
𝑓1(𝑟, 𝜃) = (1 + 𝑔(𝑟))𝑐𝑜𝑠𝜃

𝑓2(𝑟, 𝜃) = (1 + 𝑔(𝑟))𝑠𝑖𝑛𝜃
                         (4) 

                      𝑔(𝑟) = 𝑟 = 10𝑥2
3 − 15𝑥2

2 + 7.5𝑥2                    (5) 

                              𝜃 =
𝜋

2
𝑥1

5 ,    0 ≤ 𝑥1, 𝑥2 ≤ 1                          (6) 

Where 𝑓1 and 𝑓2 are objectives, 𝑥1 and 𝑥2 are design 

variables, and 𝑟 and 𝜃 are intermediate parameters. As (5) and 

(6) suggest, heavy bias has been introduced into the mapping 

from the design space to the objective space of this test problem 

in order to build a simple test problem with variations in 

sensitivity across the objective space. The results of the first and 

the second step of the approach are shown in Fig. 2. Figure 3 

uses a color map to show the values of robustness across the 

optimal region. These values are calculated through linear 

interpolation among the robustness values of the population 

solution points in the optimal region. As can be seen in Fig. 3, 

the optimal region shows a larger recession away from the 

Pareto front where the gain in robustness is higher. The results 

of applying this approach to an interior permanent magnet 

motor design problem will be presented in the extended paper. 

 
Fig. 2.  Results of the two steps of multi-objective robust optimization. 

 
Fig. 3.  Robustness across the optimal region. 
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